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Z= X+ iY  complex variable
+ in transformed complex variable
In x natural logarithm function

A Laplace operator

2. QUALITATIVE DISCUSSION

The basic configuration showing the essential features of the diffraction
process may be seen in Fig. 2(a). This is a shadowgraph of the wave pattern
produced by a shock wave which strikes a blunt two-dimensional obstacle.
A diagrammatic sketch of the picture is given in Fig. 2(b). It can be seen that
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Fl(i. 2  (a), (h ) — The diffraction of a shock wave around a blunt obstacle

the incident shock wave,  M„  is reflected from the body as from a solid wall,
and a reflected shock, M„ is formed. The presence of the corner  0  produces a

disturbance which propagates itself as a quasi-circular wave ABC. As the

incident shock is weak, all propagation velocities do not differ much from the
sound speed.
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Therefore, in Fig. 2(b), the perturbed region has been drawn as truly
circular. Its boundary is formed by a rarefaction wave,  BC,  which propagates
into the stagnation region  3,  left behind by the reflected shock, and a com-
pression wave,  AB,  propagating into the uniform flow 2, behind the incident
shock.

From the practical standpoint, it is the pressure distribution on the obstacle
walls that presents interest ; therefore, the slight distortion of the actual wave
pattern introduced by assuming all wave speeds to be equal should be of little
consequence.

Finally, in Fig. 2(a) one may see a vortex taking shape at the corner of the
model.

In the later stages of the motion, the disturbances originated at the opposite
corners of the obstacle (or reflected from the lower wall) will overlap; the
successive configurations are shown in Figs.  3(a), (b), (c).  Subsequently, other
disturbances are produced at the corners and the wave pattern becomes more
complex; however, the intensity of the perturbations diminishes gradually and
eventually a quasi-steady flow regime is reached, governed by the equations
of incompressible steady flows. Other flow pictures, not reproduced here, show
that the corner vortex breaks down rather late in the process.

The second basic configuration is the reverse of the first (Fig.  4(a), (b)).  The
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FIG. 3  (a), (b), (c) —  The evolution of the diffraction process
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In this manner, two simplifying principles have been established for the
flows dealt with here:  (i)  that the geometrical pattern of the diffracted waves
can be simplified, assuming the same velocity for all waves; and  (ii),  that the
two processes discussed above are independent and, in the early stages, the
flow may be considered as potential.

FIG. 6 — The passage of a shock wave over a flat plate

FIG. 7 — Reversal of the flow direction around a plate
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Flo. 9 — A capacitive pressure pick-up

FIG. 10 — The response of the pick-up when mounted in the end-wall

of a shock-tube. The time-marking frequency is 500 Kc's

FIG. 11 — The pressure variation at a point on a blunted model. The

time-marking frequency is 100 Kc/s
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resulting equations cannot be linearised, and a finite-difference scheme has
to be used.

(2) The shock-tube boundary layer should exert its influence on the flow
only late in the development of the flow, when the waves diffracted from the
obstacle are reflected at the tube walls. Such circumstances have been

avoided in our experiments, and our opinion is that they can be avoided also
in the case of strong shocks, by using models of appropriate size.




