The Propagation of Shock Waves
around Obstacles and in Bent Ducts

LUCIAN Z DUMITRESCU

Head, Shock-tube Laboratory, Institute of Fluid Mechanics,
Bucharest

SUMMARY

The interaction of weak shocks with two-dimensional obstacles, and their
propagation in bent ducts, is discussed. Pictures obtained in a shock-tube give
support to assumptions, enabling an approximative theory to be developed;
pressure recordings agree with computations. Main results are: (i) peak
transient pressures are double the shock over-pressure; (if) the wave diffrac-
tion has a much shorter time-scale than the turbulent wake formation and,
therefore, these two processes can be studied independently; (iii) the reshaping
of the shock after passing through a sharp 90° bend needs about 10 duct
diameters and less for rounded bends.

I. INTRODUCTION

The subject of this paper is the propagation of weak shock waves (shock
Mach number less than about 1-25, pressure ratio less than about 1-6)
around obstacles placed in an indefinite medium, as well as in closed ducts
having bends and/or cross-sectional changes. These phenomena share in
common many features and the same theoretical arguments will be shown to
hold for them.

Aside from the academic interest of these topics, the reason for their
investigation lies also in the variety of practical circumstances in which they
are encountered: supersonic booms, blasts in mine galleries, transient
phenomena in pneumatic control systems and gas pipe-lines, waves produced
in the inlet and exhaust manifolds of internal-combustion engines and
so on.

Some of the results discussed here have been reported elsewhere''’; other
theoretical works have been published on related topics®**; however, no
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complete solution has been given yet, nor have published experimental data
been found.

This work has been done in the shock-tube laboratory of the Institute of
Fluid Mechanics; in Fig. 1 a general view of the laboratory is given, showing
one of its shock-tubes in which part of the tests reported here have been

carried out. A description of the shock-tube and its performance may be
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found in ref. 5.

F1G. 1 — General view of the 200 by 300 mm shock-tube

LisT OF SYMBOLS

incident shock wave propagation Mach number
reflected shock wave propagation Mach number
characteristic time of wave-propagation process
characteristic time of wave-development process
characteristic dimension of the obstacle

time

velocity of sound

flow velocity components

pressure

density

co-ordinates in the physical plane

transformed co-ordinates

polar co-ordinates in plane (%, y)

polar co-ordinates in plane (X, Y)
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Z=X+iY complex variable
{=E&+in transformed complex variable
In x natural logarithm function
A Laplace operator

2. QUALITATIVE DISCUSSION

The basic configuration showing the essential features of the diffraction
process may be seen in Fig. 2(a). This is a shadowgraph of the wave pattern
produced by a shock wave which strikes a blunt two-dimensional obstacle.
A diagrammatic sketch of the picture is given in Fig. 2(). It can be seen that

FiG. 2 (a), (b) — The diffraction of a shock wave around a blunt obstacle

the incident shock wave, M, is reflected from the body as from a solid wall,
and a reflected shock, M., is formed. The presence of the corner O produces a
disturbance which propagates itself as a quasi-circular wave ABC. As the
incident shock is weak, all propagation velocities do not differ much from the
sound speed.
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Therefore, in Fig. 2(b), the perturbed region has been drawn as truly
circular. Its boundary is formed by a rarefaction wave, BC, which propagates
into the stagnation region 3, left behind by the reflected shock, and a com-
pression wave, 4B, propagating into the uniform flow 2, behind the incident
shock.

From the practical standpoint, it is the pressure distribution on the obstacle
walls that presents interest; therefore, the slight distortion of the actual wave
pattern introduced by assuming all wave speeds to be equal should be of little
consequence. .

Finally, in Fig. 2(a) one may see a vortex taking shape at the corner of the
model.

In the later stages of the motion, the disturbances originated at the opposite
corners of the obstacle (or reflected from the lower wall) will overlap; the
successive configurations are shown in Figs. 3(a), (b), (c). Subsequently, other
disturbances are produced at the corners and the wave pattern becomes more
complex ; however, the intensity of the perturbations diminishes gradually and
eventually a quasi-steady flow regime is reached, governed by the equations
of incompressible steady flows. Other flow pictures, not reproduced here, show
that the corner vortex breaks down rather late in the process.

The second basic configuration is the reverse of the first (Fig. 4(a), (b)). The

FiG. 3 (a), (b), (¢) — The evolution of the diffraction process
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FI1G. 4 (a), (b)) — The expansion of a Fi1G. 5 — The breakdown of the
shock wave over a step corner vortex

evaluation of this motion is somewhat more difficult, since the wave diffrac-
tion process takes place in the same region where the turbulent wake will
ultimately develop and it is not clear a priori how these two phenomena will
interact. The experimental evidence suggests that the wave propagation
process is more or less independent of the wake formation; therefore, it has
been concluded that these two processes can be studied separately. In Fig. 5
one may see how the corner vortex breaks down and is drawn away with the
flow speed.t

The independence of the two processes can also be justified by a reminder
that the wave diffraction is a phenomenon associated to a characteristic time,
T,, related to the propagation velocity of the disturbances (i.e. the speed of
sound, a); T, =0(H|a), where H is the main dimension of the obstacle. On
the other hand, the wake development proceeds with a time-scale 75, which is
related to the mean flow velocity u; T, = O(H/u). As, for weak shock waves, u
is much smaller than a, the two time-scales are very different and the two
processes should not interact significantly.

T These pictures suggest the idea of a study of the rolling-up and breakdown of an
attached vortex, using the shock-tube technique, as an independent problem, more
connected with boundary-layer research.
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In this manner, two simplifying principles have been established for the
flows dealt with here: (i) that the geometrical pattern of the diffracted waves
can be simplified, assuming the same velocity for all waves; and (if), that the
two processes discussed above are independent and, in the early stages, the
flow may be considered as potential.

F1G. 6 — The passage of a shock wave over a flat plate

FiG. 7 — Reversal of the flow direction around a plate
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These principles greatly simplify the theoretical treatment of the problem,
as will be shown later. Further tests have been made to check how far they
can be applied. Thus, in Fig. 6, one may see the shock wave striking a flat
plate put across the flow; the resultant wave pattern is a combination of those
shown in Figs. 2 and 4.

In Fig. 7 one may see that the flow direction can be deflected by a full
180° in the early stages of the process; this establishes beyond doubt the
validity of the above mentioned principles.

Other obstacle shapes (wedges, rounded corners and so on) have also been
investigated ; flow visualisations and theoretical formulae for these are given
elsewhere®),

3. THEORETICAL ANALYSIS

The analytical treatment of the problem will be discussed briefly, taking
the case shown in Fig. 2 as an example; all other configurations can be dealt
with easily in the same manner"’,

The flow parameters in regions /, 2 and 3 are known; only the motion in
the perturbed region 4 has to be determined. The equations of motion are:

du  Odu  du 10
2 Ut = =T )
Ot ox 0Oy pCx
il v dv 10
—tu—+v—=— ——,R (2)
ct dx  dy p Q)
op cu dv Jdp  dp
"{-+p(q +,>+u f—-Hﬂff =0 (3)
ot ox Joy ox cy
d
O - i 4
dp

where « and v are the velocity components in the x and y directions, p the
pressure, p the density, and a the speed of sound.

According to the principles already established, it can be seen that the flow
sketched in Fig. 2(b) has no characteristic dimension, so long as the pertur-
bation waves do not overlap, or are reflected by the bottom wall DE. There-
fore, the motion is self-similar, and the problem can be simplified by the
introduction of transformed variables:

X =x/at, y=ylat 5)
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Furthermore, as the velocities are small, in the transformed equations,
higher-order terms, such as u du/dx, can be neglected; thus, after certain
transformations, the following equation for the pressure is obtained:

op _ap
?‘l'ya_) (6)

Following Smyrl™®, this is reduced to the Laplace equation, Ap=0, by the
use of the Busemann transformation:

2R

r:'l_'i'_'R*Z, 0=¢ (7)

which maps the plane (%, y), in which polar co-ordinates (r, #) have been
introduced, into the plane (X, Y), of polar co-ordinates (R, ¢). The domain 4
in Fig. 2(b) is mapped inside a circle of unit radius, as shown in Fig. 8(a).
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F1G. 8 (a), (b) — The transformed disturbance domain of Fig. 2 (b)

The boundary conditions for the problem are the following:

along AB: (0 < ¢ < =n): p = p, = const. (8)
3n

along BC: (n <¢ < —2—): p = p; = const. &)
op _dp _dp

al A: (¢ =0): T = A= 0

along 04: (¢ =0) 556 oY 0 (10)
3n dp dp dp

long OB: (p="-): T=t="=0 1

. (‘{’ 2) 0x "0 X 4
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Conditions (10) and (11) are equivalent to that of vanishing normal
velocities on the walls, keeping account of the transformations of equations
(5)and (7).

To solve the problem, the domain of Fig. 8(a) is conformally mapped into
a half-circle in the plane { =& +in (Fig. 8(b)), by the transform:

=273 (Z=X+iY) (12)

and the pressure p is taken as the real part of a complex potential F({), which
is readily determined, after prolonging it by symmetry in the lower half-
circle:

_ _ ptnil3
F@Q) = pz—p’m_pl(mﬂn ;—e;“‘f-‘) (13)

This formula permits the computation of the variation in time of the
pressure distribution along the obstacle walls, up to the moment when the
perturbation wave, BC, reflected from the lower wall, DE, reaches the
respective point. In the later stages of the motion, the pressure variation can
still be approximately determined by assuming that the incident and
reflected disturbance waves do not interfere with each other while over-
lapping and by adding their effects.

Explicit formulae for the pressure distribution on various other obstacle
configurations have also been developed'). This analysis shows that, what-
ever the obstacle shape, the maximum over-pressure reached is equal to that
produced in the stagnation zone behind a reflected shock; for weak shocks,
this is about double the over-pressure of the incident wave.

4, EXPERIMENTAL RESULTS

To check the validity of the theoretical considerations, pressure measure-
ments have been made on models placed in the shock-tube. Details on the
measuring technique and electronic equipment are given elsewhere(®: 7> 8
%19 The specially developed capacitive pressure pick-ups are shown in
Fig. 9; they have an overall diameter of 8 mm, a rise-time of about 8 micro-
seconds and a sensitivity of 100 millivolts per atmosphere. Their most out-
standing feature is, however, their complete insensitivity to parasitic mechani-
cal vibrations, which allows them to be mounted inside the models without
any special precautions. As a measure of their performance qualities, in
Fig. 10 an oscilloscope recording is shown of the response to a pure pressure
step, obtained by placing the pick-up in the end-wall of the shock-tube. The
time-marking frequency displayed in the picture is 500 Kc/s; on all following
oscilloscope photographs, the time-marking frequency is 100 Kc/s.
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FiG. 9 — A capacitive pressure pick-up

FiG. 10 — The response of the pick-up when mounted in the end-wall
of a shock-tube. The time-marking frequency is 500 K¢/s

F1G. 11 — The pressure variation at a point on a blunted model. The
time-marking frequency is 100 Kc/s
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Figure 11 shows the pressure history at a point on the front surface of the
blunt model which produced the wave pattern of Fig. 2. In Fig. 12, a com-
parison is made between the computed pressure variation in time and the
actually recorded values, redrawn for the purpose. One may see that the
agreement is good, even in the later stages of the motion, when the diffracted
waves are interfering with each other. In particular, the predicted value of the
maximum over-pressure plateau is obtained.
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F1G. 12 — Comparison of the theory with experiment for the pressure
variation on a blunted model

5. THE PROPAGATION OF WEAK SHOCK WAVES IN
BENT DucTs

All the foregoing considerations can be applied to the propagation of weak
shock waves in bent ducts. For instance, by combining the flow patterns of
Figs. 2 and 3, one obtains the picture of the phenomena taking place in a
sharp 90° bend. In Fig. 13(a) a shadowgraph of the flow is given, obtained in
a shock-tube having a 30 mm. square cross-section; Fig. 13(b) is a diagram-
matic sketch, at the same scale, of the successive wave reflections drawn in
accordance with the theoretical agreements developed above. Although the
development of the corner vortex begins to interfere with the later reflections,
the general features of the flow are still reproduced by the simplified rep-
resentations.

Figures 14 and 15 show the waves produced in a sharp 45° and a rounded
bend, respectively. It may be seen that in the rounded bend the reflected
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waves are attenuated very soon and a quasi-normal shock is travelling in
the tube.

In connection with these phenomena, two problems of practical interest
arise: first, to determine the values of the maximum over-pressures which
build up on the tube walls, and second, to establish how the shock wave
again takes its normal shape after passing through the bend. In accordance
with the arguments developed above, the maximum pressure should be equal

F1G. 13 (a), (b) — The wave pattern produced by the propagation of a
shock wave in a sharp bend

to that behind a reflected normal shock (about double the incident shock
strength) and be produced near the corner of sharp bends. This result has been
substantiated by experiments.

The mechanism of re-formation of the shock wave involves the overtaking
and coalescence of several diffracted waves and cannot be accounted for by
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F1G. 14 — The wave system produced by the passage of a shock wave
through a 45° bend

the simplified theory, which supposes constant wave velocities; therefore, a
series of tests have been made, recording the pressure on an end-wall placed
at various distances downstream of the corner of a 90° bend.

Some of the oscilloscope recordings are shown in Figs. 16(a), (b), (¢), (d);
from these tests, it is concluded that, at a distance of about 10 tube widths,
the plane shock wave may be considered as re-established. Flow shadow-
graphs have confirmed this result, showing a straight shock followed by a
sequence of attenuated oblique waves.

FiG. 15 — The propagation of a shock wave through a rounded
90° bend
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For rounded bends, the pressure recordings and the visualisations show
that the shock wave is re-shaped almost immediately after emerging from the
corner.

This behaviour of the shock waves in sharp and rounded bends may be

~©

®

W, A—

FiG. 16 (a), (b), (¢), (d) — Oscilloscope recordings of the pressure variation
in a sharp bend. The time-marking frequency is 100 K¢/s

paralleled to the way in which uniform velocities are re-established in the
cross-section of a duct, in steady subsonic flow, downstream of a bend,
inasmuch as sharp corners produce strong flow non-uniformities. However,
it should be pointed out that these two phenomena have different causes
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(wave diffractions in the first case, and boundary-layer separation in the
second).

6. THE PROPAGATION OF WEAK SHOCK WAVES IN
DucTts WITH AREA DISCONTINUITIES

Another configuration frequently encountered in practice is that of ducts
having cross-sectional discontinuities (contractions or expansions). The res-
pective flow phenomena are also readily accounted for by the methods
developed in this paper and some of the results will be discussed briefly here.

Figure 17 shows the wave systems produced in a contracted tube (con-
traction ratio 2). It can be seen that the shock wave is re-shaped quite soon,
leaving behind a uniform flow region but that a system of reflected waves are
propagating upstream. Oscilloscope recordings of the pressure in an end-wall
placed at various distances downstream of the throat, also show good
agreement with the one-dimensional theory (see, e.g., ref. 11) for the trans-
mitted shock strength.

The flow in an expanded tube is shown in Fig. 18. Here the shock wave
needs a somewhat longer distance to take again its straight shape, and leaves
behind a complicated set of reflected waves; however, they are still well

F1G. 17 — The propagation of a shock wave in a contracted duct

F1G. 18 — The diffraction of a shock wave in an expanded duct
G2
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reproduced by the simple theory. The transmitted shock pressure is stabilised
to the one-dimensional value only several tube widths downstream; as the
theory also predicts, nearer to the throat, end-wall recordings show an
initial pressure equal to that produced by the undisturbed shock wave,
gradually falling to the value predicted by the one-dimensional theory.

7. CONCLUDING REMARKS

Based on experimental evidence, some simplifying arguments have been
put forward which allow an approximate theory to be developed for the
propagation of weak shock waves around various obstacles, in bent ducts or
in tubes with area discontinuities. In particular, the detailed structure of the
wave pattern, and the pressure distribution in the early stages of the flow, are
well accounted for.

In the future it is hoped to extend this study, on the same lines, to various
related problems and in particular to strong shock waves; many interesting
phenomena have shown up during the research, giving suggestions for further
investigations.

8. ACKNOWLEDGMENTS

The continuous guidance and support of Professor E. Carafoli is grate-
fully acknowledged. The author wishes also to thank his colleagues of the
Laboratory for their substantial help in this research.

REFERENCES

(1) DuMITRESCU, LuciaN Z., ‘The interaction of weak shock waves with obstacles.
(I) Development of the unsteady process. (II) Theoretical analysis. (I11) Com-
parison of the theory with experimental results.” To be published in Revue
Roumaine des Sciences Techniques-Mécanique Appliquée.

(2) NikoLsKY, A. A., SMIRNOV, V. A, ‘The action of shock waves on obstacles’
(in Russian), Inzhenernyi Zhurnal, 2, 1, 1962.

(3) SmyrL, J. L., “The impact of a shock wave on a thin two-dimensional airfoil
moving at supersonic speed.” Journal of Fluid Mechanics, 15,2, 1963.

(4) ButLer, T. D., ‘Numerical calculations of the transient loading of blunt
obstacles by shocks in air.” A.I.A.A. Journal, 4, 3, 1966.

(5) DumiTrescu, Lucian Z., “A shock-tube for aerodynamic research’ (in Roman-
ian). Studii si Cercetdri de Mecanica Aplicatd (Bucharest), 10, 1, 1959.

(6) Procorovic, E. and DumiTrescu L., ‘Measurement of aerodvnamic pressures
in a shock-tube (in Romanian). Studii si Cercetdri de Mecanicd Aplicatd
(Bucharest), 12, 1, 1961.




Lucian Z. Dumitrescu 203

(7) JAakaB, 1., ZAHARESCU, A., DUMITRESCU, L., ‘A method for the measurement
of the propagation velocity of shock waves’ (in Russian). Revue de Mécanigue
Appliguée (Bucharest), 7, 1, 1962.

(8) Dumitrescu, LuciaN Z., ‘A method for the dynamic calibration of pressure
transducers.” Revie Roumaine des Sciences Techniques-Mécanique Appliquée,
9, 2, 1964.

(9) Jakas, L., “An electrical method for the optimum damping of mechanical
transducers’ (in German). Revie de Mécanigue Appliquée (Bucharest) 7, 6, 1962.

(10) DumiTrescu, Lucian Z., ‘The development and use of capacitive pressure
transducers for aerodynamic research.’ Institute of Fluid Mechanics Report,
1964.

(11) RUDINGER, G., Wave diagrams for nonsteady flow in ducts. D. Van Nostrand
Co., Inc. New York, 1955.

DiscussionN

L. H. Ohman (National Aeronautical Establishment/N.R.C., Ottawa,
Canada): Your oscillograph records show a pronounced high-frequency
modulation. To what do you attribute these?

Dr. Dumitrescu: On some oscillograms (especially in Figs. 10, 11 and
16(a) a high-frequency oscillation is superposed on the pressure variation; its
peak-to-peak amplitude is about 1-59; of the main signal. This phenomenon
has already been observed and some special experiments have been carried out
to find an explanation. Our pressure pick-ups are diaphragm-type capacitive
transducers; their natural ringing frequency (of about 50 Kc/s) is damped by
means of a special electrical correction circuit, individually adjusted for each
pick-up to produce just the critical damping (see ref. 9). However, when the
pick-up diaphragm is submitted to a step pressure input (produced by the
head-on arrival of a shock wave), the higher harmonics of the diaphragm
oscillation frequency are also excited. The first of these to give a capacity
variation is the second harmonic, having in the case of our pick-ups a
frequency of about 150 Kc/s; this is seen in the pictures and has been put
into better evidence by special experiments. When the pressure rise is more
gradual, the harmonics are not excited, and the signal is smooth (see Fig.
16(h)). Although means can be found to render the harmonics invisible on
the oscillograms, these have certain disadvantages in that they introduce
distortions and have not been used, since the oscillation amplitude is small
and does not impair the quality of the pictures. It should be remarked that
such secondary effects are showing up in our oscillograms due precisely to
their high quality and to the absence of other distortions and perturbations
which enables us to use the pick-ups for displaying pressure variations up to
near their natural frequency.
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J. L. Stollery (Aero. Dept., Imperial College, London S.W. 7., England):
Would the author care to amplify his remarks about the complex wave pattern
set up in a sharp bend (Fig. 13). In particular, could he differentiate between
the two types of wave and say how they originate ?

Dr. Dumitrescu: When the shock wave reaches the corner of the duct, first,
a diffraction process similar to that shown in Fig. 4 is initiated. In this
manner, a shock wave is propagated downstream, and a rarefaction (shown
in Fig. 13 by a double line) is swept upstream. The process is complicated
further by reflections and diffractions of the transmitted waves on the walls.
The transmitted and reflected rarefaction waves, however, have the tendency
to spread in width while travelling along the tube, and so become invisible
on the shadowgraph. The successive reflections of the shock wave are,
however, clearly visible in the picture. When the shock wave, first reflected
at the outer wall of the bend, reaches again the inner corner, a second
diffraction process is initiated (which has been shown also by double lines);
a shock is transmitted upstream and a rarefaction travels downstream. These
waves are later undergoing further reflections on the corner walls, and so on.
Each time a reflected shock reaches the inner corner, a new diffraction
process begins. However, the latter stages of the interactions are somewhat
distorted by the presence of the corner vortex, which breaks down and is
slowly swept downstream. Also, the waves become progressively weaker,
until equilibrium is reached.

Dr. E. W. E. Rogers (Aero Division, N.P.L., Teddington, Middx, England):
Dr. Dumitrescu has presented an interesting account of his work and shown
the ability of a fairly simple theory, based on the assumption of weak shock
waves, to predict the development of the shock pattern. For strong shock
waves, a theoretical analysis would seem to be much more difficult; perhaps
he would tell us how he proposes to tackle this aspect of his future research
programme ? Also, perhaps Dr. Dumitrescu could comment on the effect that
the wall boundary layers, induced behind the incident shock, have on the
developing shock pattern. For example, these might pose serious difficulties
when the reflected shock waves are strong enough to cause flow separation.

Dr. Dumitrescu: (1) The main difficulty, in the case of strong shock waves,
seems to be the fact that, as the flow velocity becomes also high, the time
scales of the wave-propagation and wake-formation processes will become
comparable, and the two phenomena will cease to be separable. However,
preliminary tests, now being made in our laboratory, show that, at least for
certain obstacle shapes, the vortices generated at the obstacle corners do not
much disturb the wave pattern, so that the motion still remains self-similar,
in the first phase. Therefore, the time variable can be eliminated; but the
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resulting equations cannot be linearised, and a finite-difference scheme has
to be used.

(2) The shock-tube boundary layer should exert its influence on the flow
only late in the development of the flow, when the waves diffracted from the
obstacle are reflected at the tube walls. Such circumstances have been
avoided in our experiments, and our opinion is that they can be avoided also
in the case of strong shocks, by using models of appropriate size.





